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INTRODUCTION

Sensitivity analysis is an important tool in the study
of nuclear systems. In our recent work, we introduced a
hybrid method that  combines  sampling techniques  with
first-order sensitivity analysis to approximate the effects
of  uncertainty  in  parameters  of  a  nuclear  reactor
simulation model. For elementary examples, the approach
offers a substantial advantage (in precision, computational
efficiency, or both) over classical methods of uncertainty
quantification [1]. 

First-order  sensitivity  analysis  is  predicated  on
obtaining derivative information from nuclear engineering
models. For software suites such as SAS4A/SASSYS-1,
manual  development  of  derivative  information  is
considered to be a difficult  task [2].  Divided-difference
approaches  are  inefficient  for  high-dimensional
uncertainty  sets.  Automatic  differentiation  (AD)
approaches  [3,4]  offer  a  conceptually  promising
alternative for obtaining derivatives. 

Most  of  the  available  AD tools  are  developed  for
research  purposes;  their  potential  benefit  for  realistic
applications has not been fully examined. We refer to [5]
for an example of applying AD to Fortran 90 code, but we
note that many models of interest are more complex and
developed according to older (Fortran 77) standards.

We investigate the following question: Are AD tools
now  at  a  stage  where  they  can  provide  derivative
information for  realistic  nuclear  engineering codes  at  a
minor development cost?

DESCRIPTION OF THE WORK 

AD  is  a  technique  used  to  evaluate  derivatives  of
functions defined by computer programs based on the fact
that any program can be viewed as a finite sequence of
elementary  operations,  the  derivatives  of  which  are
known. 

A program P  implementing the function )(f ,
can be parsed into a sequence of elementary steps:
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The task of AD is to assemble a new program 'P  to
compute the derivative.
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The  reverse (adjoint)  mode  of  AD  reverses  the
control flow of the program to compute the derivative.

T

k

k

TT

f

f

f

ff

































11

21 ...
      (3)

The advantage of  the adjoint  mode over  the  direct
mode  (2)  is  computational  efficiency:  it  allows
computation of all components of the gradient in a single
run of  'P , as opposed to multiple runs required by (2).
There is a theoretical limit, independent of the uncertainty
dimension,  on  the  additional  computational  cost  of
running the AD-augmented code in reverse mode [4].

In  an  ideal  situation,  preparing  the  code  for
processing by AD tools  is  limited  to  identifying inputs
and  outputs  of  interest.  In  practice,  application  of  AD
requires additional effort. 

Applying AD to Codes with Major Legacy
Components

The  following  (Fortran  77)  programming  features
potentially make the application of AD difficult:

- Machine-dependent  code  sections  need  to  be
removed.

- EQUIVALENCE constructs need to be replaced
by  simple  array  allocations  and  element-wise
assignments.

- COMMON  blocks  with  inconsistent  sizes
between  subroutines  need  to  be  renamed;  in
addition, initialization with strong typing needs
to  be  enforced  through  use  of  additional
variables in each subroutine.

- Subroutines with variable number of parameters
need to be split into separate subroutines for each
type of call.
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- Direct  memory  copy  operations  need  to  be
rewritten as explicit operations.

- IMPLICIT  definitions  occasionally  need  to  be
replaced by subroutine definitions.

We note that the problematic features encountered so
far  are  not  related to  the mathematical  structure  of  the
model.  In  the  possible  case  of  inherently  non  smooth
operations,  a  smoothing  interpolation  can  be
differentiated  instead,  which  also  does  not  require
modifications of the mathematical structure. We estimate
that a competent programmer would  need approximately
one week to prepare a code of comparable complexity for
automatic differentiation. Since the results of sensitivity
analysis have many applications, we find the development
cost acceptable. We hope to provide a detailed description
of performance and development in an extended version
of the paper.

 
Applied Example

We  applied  automatic  differentiation  tools  (in
forward  mode)  to  a  nuclear  reactor  simulation  code
known  as  MATWS.  The  model  combines  the  point-
kinetics module from the SAS4A/SASSYS-1 code with a
simplified  representation  of  the  reactor  heat  removal
systems. The code consists of over 10,000 lines of Fortran
77. MATWS was previously used in combination with the
statistical  simulation  tool  GoldSim  to  model  accident
scenarios [2].

The  chosen  outputs  of  interest  were  the  transient
coolant, cladding, structure, and fuel temperatures at the
end of a simulation for an unprotected loss of flow. The
chosen inputs were the radial core expansion, control rod
driveline  expansion,  fuel  axial  expansion,  and  Doppler
reactivity  feedback  coefficients.  The  code  was  passed
through  different  AD tools:  ADIFOR,  OpenAD/F,  and
TAMC in direct mode and TAPENADE in reverse mode
[6].   The  tools  use  somewhat  different  algorithms  for
optimal  evaluation  of  the  sequence  of  numerical
operations required by (2) or (3). For verification, we also
computed  the  derivatives  using  finite-difference
approximation, FD. 

Table 1. Comparison of different estimates for the
derivatives of the fuel and coolant temperatures with
respect to the radial core expansion coefficient.

AD Tool
Fuel Temperature
Derivative, K

Coolant Temperature
Derivative, K

ADIFOR 18312.5474227 17468.4511373
OpenAD/F 18312.5474227 17468.4511372
TAMC 18312.5474248 17468.4511392
TAPENADE 18312.5474227 17468.4511372
FD 18312.5269537 17468.4315994

RESULTS

Table 1 presents a portion of derivative verification
tests. All the results and FD approximation agree within
0.01% or better (and all AD results agree almost perfectly
with each other). We conclude that AD results are valid.

We view our work as a strong argument for applying
AD to nuclear engineering codes with legacy components.
This opens the way to improving a wide range of existing
tools  of  simulation  and  analysis  in  nuclear  reactor
applications.  An  ideal  subject  of  AD-based  sensitivity
analysis  is  a  code  that  is  portable,  language-standard
compliant,  and  reversible  (effectively,  does  not  contain
features that make adjoint differentiation inefficient). Not
all the models can be held to this standard. Future work
on using AD for sensitivity analysis will likely be a co-
design process, with improvements made to AD tools and
the newly developed models simultaneously.
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